ELECTROSPINNING OF NANOCOMPOSITE FIBRILLAR TUBULAR AND FLAT SCAFFOLDS WITH CONTROLLED FIBRE ORIENTATION A.A.Salifu, B.D.Nury and C.Lekakou Centre of Materials, Surfaces and Structural Systems
نویسندگان
چکیده
Electrospinning was used in innovative electrospinning rigs to obtain tubular and flat fibrous structures with controlled fibre orientation with the aim to be used as scaffolds for biomedical applications, more specifically in the tissue engineering of vascular and orthopaedic grafts. Gelatine and hydroxyapatite (HA)-gelatine solutions of various compositions were tried and electrospinning of continuous fibres was maintained for gelatine and up to 0.30 g/g HA-gelatine solutions in 2,2,2-trifluoroethanol (TFE). Small diameter tubular scaffolds were electrospun with axial fibre orientation and flat scaffolds were cut from fibre mats electrospun around a wired drum substrate. The fibrous mats were crosslinked using a glutaraldehyde solution and subjected to image analysis of SEM micrographs, water swelling tests, and mechanical testing. Fibre diameter in the electrospun scaffolds could be varied depending on the feed solution concentration and composition whereas fibre orientation was affected by the processing conditions. After crosslinking, the 0.30 g/g HA-gelatine scaffolds absorbed the minimum amount of water after 48 h soaking and they had the highest Young's modulus, 60 MPa, and highest strength, 3.9 MPa.
منابع مشابه
Comparison the performance of different reverse osmosis membrane modules by CFD modeling
Reverse osmosis is a commonly used process in water desalination. Due to the scarcity of freshwater resources and wastewater problems, a lot of theory and experimental studies have been conducted to optimize this process. In the present study, the performance of reverse osmosis membrane module of salt–water separation was simulated based on computational fluid dynamics technique and solution-di...
متن کاملManufacturing of Doubly Curved Tubular Composite Structures: Mapping and Weave Modifications
The versatility of the textile weaving process has made it a popular method for producing structural composite preforms. Enhanced through-thickness strength by multi-layer weaving, good in-plane strength and the ability to produce 2.5D or 3D shapes, are some of the advantages which have made weaving the most commonly used textile process for composite applications. It is also possible to incorp...
متن کاملFlow and Pressure Distributions in Short Heat Exchanger Cores with Abrupt Entrance and Exit
The typical installation of a heat exchange device usually involves a flow contraction at the core entrance and a flow expansion at the core exit. Repeated flow Contraction and expansion are experienced in the flow passages of some compact heat exchangers. The latter refers to the flow passages in the plate-fin type with louvered fins or stripped fins and in the tubular type with dimpled-circul...
متن کاملAnalysis of diffusion in curved surfaces and its application to tubular membranes
Diffusion of particles in curved surfaces is inherently complex compared with diffusion in a flat membrane, owing to the nonplanarity of the surface. The consequence of such nonplanar geometry on diffusion is poorly understood but is highly relevant in the case of cell membranes, which often adopt complex geometries. To address this question, we developed a new finite element approach to model ...
متن کاملDegradation-induced changes of mechanical properties of an electro-spun polyester-urethane scaffold for soft tissue regeneration.
The aim of this study was the in vitro investigation of the change in mechanical properties of a fast-degrading electro-spun polymeric scaffold for the use in soft tissue regenerative implants. Tubular scaffolds were electro-spun from a DegraPol® D30 polyesther-urethane solution (target outer diameter: 5.0 mm; scaffold wall thickness: 0.99 ± 0.18 mm). Scaffold samples were subjected to hydrolyt...
متن کامل